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We study the effects of thickness on the ground states of two-dimensional quantum dots in high magnetic
fields. To be specific, we assume the thickness to be small so that only the lowest state in the corresponding
direction is occupied, which however leads to a modification of the effective interaction between the electrons.
We find the ground-state phase diagram and demonstrate the emergence of different phases as the thickness is
accounted for. Finally, the wave-functional form and vortex structure of different phases are analyzed.
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I. INTRODUCTION

In recent years, there has been an increasing interest to-
ward two-dimensional quantum dots realized in semiconduc-
tor heterostructures. Besides applications in quantum infor-
mation and quantum computing, quantum dots are
interesting in their own right as an example of strongly cor-
related interacting quantum systems, in which the strong in-
fluence of the magnetic field entails prominent diverseness.
Moreover, the results extrapolated from computationally fea-
sible few-electron droplets are frequently used to understand
macroscopic quantum phenomena such as the quantum Hall
effect.

In this paper, we report an exact-diagonalization study of
the effects of the layer thickness on the ground states of
quantum dots in high magnetic fields. Earlier studies have
pointed out1,2 that in a strictly two-dimensional parabolic
quantum dot in a strong magnetic field and with up to seven
electrons, the ground states have strong correlations that fa-
vor either of the two classical configurations of the types
depicted in Fig. 1, a regular polygon with or without an
electron at the center. This leads to the allowed angular mo-
mentum values M =MMDD+k�M, where k is a non-negative
integer, �M =N or N−1 �with �=1�, and MMDD=N�N
−1� /2 is the minimum angular momentum of the spin-
polarized quantum dot dictated by the Pauli principle. Alter-
native to the geometric approach is the microscopic compos-
ite fermion theory �as opposed to the not-so-successful
mean-field composite fermion theory�, the generality of
which also extends to larger particle numbers.3

The vortices in quantum dots with zero thickness were
considered in Ref. 4. Taking into account the thickness of the
quantum dot is, however, occasionally necessary for under-
standing of the experimental results.5–7 Since the fractional
quantum Hall effect is destroyed in thick systems,8 which
relates to unbinding transition of the vortices at the electron
positions,9 it is of a more general interest to examine what
types of vortex structures are favored at different values of
the thickness parameter.

In Sec. II, we present the microscopic model and a
method for solving it. Section III contains the phase dia-
grams and related discussion, followed by an analysis of the
microscopic states and vortex structures of different phases
in Sec. IV. Finally, Sec. V summarizes the main results.

II. MICROSCOPIC MODEL

Quantum dots formed in the GaAs /AlxGa1−xAs hetero-
structure are modeled for both lateral and vertical devices as
droplets of electrons in an effectively two-dimensional plane
confined by a harmonic external potential. We use an
effective-mass Hamiltonian

H = �
i=1

N ��pi +
e

c
Ai�2

2m�
+

m��0
2ri

2

2
� + �

i�j

V�rij� , �1�

where N is the number of electrons, m�=0.067me is the ef-
fective mass, and A is the vector potential of the homoge-
neous magnetic field B perpendicular to the quantum dot
plane. In the calculations, we set the confinement strength
��0 to 2 meV as its scaling should merely shift the ranges of
magnetic fields for different phases. For convenience, we
express lengths in units of effective oscillator length l
=�� /m��, where �=��0

2+ ��c /2�2 and �c=eB /m�c is the
effective cyclotron frequency.

To accommodate the thickness of the electron layer, we
employ an effective interaction potential

V�r� =
e2

�

1
�r2 + d2

, �2�

in which d is comparable to the extent of the wave functions
in the z direction and �=12.7 �cgs� is the dielectric constant
of the GaAs semiconductor medium. Typically, an effective
interaction is obtained by assuming certain form for the po-
tential in the z direction, solving for its ground state, and
integrating out the z direction. While the interaction in Eq.
�2� does not relate to any particular wave function, it leads to
same qualitative behavior, especially for smaller d, as more
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FIG. 1. Likely configurations in six-electron quantum dots.
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realistic effective interaction and is extensively used in the
field.10

The ground state of Eq. �1� is solved by constructing the
many-body Hamiltonian matrix in the basis of spin-polarized
lowest Landau level �more accurately the lowest Fock-
Darwin band since �0�0� and finding its lowest eigenstate
by the Lanczos diagonalization. The former constitutes a
Landau-level projection, an approximation that is valid at the
high magnetic field regime.11 In the oscillator units, the
single-particle wave functions read

	z
m� =
1

��m!
zme−zz̄/2, m � 0, �3�

where z=x+ iy. The nontrivial quantities are the interaction
matrix elements 	m� ,n�
V�r12�
m ,n�. Utilizing the angular
momentum conservation m�+n�=m+n, these can be written
in terms of

Mmn
l = 	m + l,n
V�r12�
m,n + l�, l,m,n � 0, �4�

for which an analytic formula is given in the Appendix.

III. PHASE DIAGRAMS

To obtain a phase diagram, we solve the interaction en-
ergy of the ground state for each angular momentum value at
each thickness, and determine the angular momentum that
has the lowest energy for each pair �d ,B� on a grid. Once we
have established the angular momenta of neighboring
phases, say M1 and M2 for certain d, we exactly solve the

magnetic field B at the phase boundary by equating the en-
ergies E�d ,B ,M1� and E�d ,B ,M2� and using a standard rou-
tine to solve B. We limit the considered angular momenta to
M �M�	= 1

5 � for five and six electrons and to M �M�	= 1
3 �

for seven and eight electrons, where we utilize the stability
of the Laughlin states in order to only have stable phases in
the phase diagrams. At weak B the ground state is the
maximum-density droplet �MMD� having 	=1, limiting M

M�	=1�. The corresponding angular momenta can be
computed from the trial wave functions12 and are given by

M�	 =
1

k
� =

kN�N − 1�
2

. �5�

The single-particle bases are limited according to m�k�N
−1�, for the two k, which is the basis size needed for the 	
= 1

k Laughlin state. Returning back to Fig. 1, we remark that
according to Eq. �5� the states that support both classical
configurations have the same angular momentum as the
Laughlin states.

Figure 2 presents the phase diagram that is the ground-
state angular momentum as a function of the thickness pa-
rameter d and the magnetic field B for five and six electrons.
If the electron number is less than 6, the structure of the
phase diagram remains unchanged as the thickness is in-
creased as seen in Fig. 2�a� for N=5. The adjacent phases are
then always separated by angular momentum �M =N. In
general, the monotonic behavior of the phase boundaries re-
sults from the decrease in the interaction energy as the thick-
ness is increased. In the case of six electrons in Fig. 2�b�,
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FIG. 2. The ground-state angular momentum phase diagram for �a� five and �b� six electrons as a function of the thickness parameter d
and the magnetic field B. The vertical lines indicate the regular angular momentum difference �M between adjacent phases. For six
electrons, the angular momentum difference changes depending on the thickness except for phases A and B, as well as for the states with
	=1, 1

3 , and 1
5 .
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there is a transition from �M =N−1 structure to �M =N
structure as the thickness is increased. As an exception, the
MDD state with a hole, M =MMDD+6 �phase A�, has a stable
phase all along. Also the phase with M =M�	= 1

3 �−6 �phase
B�, being the analogy of the Laughlin quasielectron wave
function, is narrowly retained across the whole thickness
range as indicated by the break in the vertical line. As a side
note, we have established that the overlap between states
with the same angular momentum 	��d=0� 
��d�� decreases
monotonically but remains significant through the parameter
range d� �0,3l �the overlap is �0.67 for 	= 1

3 at d=3l and
ranges up to 0.98 for the other states�.

The same basic pattern recurs to the systems with seven
and eight electrons as seen in Fig. 3, where we have confined
ourselves to the ground states with M �M�	= 1

3 �. For eight
electrons, there are two additional states with M =46 and
M =52 at small d �shaded in Fig. 3�b� that appear to be
subsequent elements of sequence M =MMDD+k�N−2� with
k=3 and 4. Indeed, we have established that the most prob-
able configuration for these states is such that six electrons
form a ring around a pair of electrons that resides near the
center of the dot. The latter angular momentum, M =52, is
also equal to that of three holes in the maximum density
droplet, M =MMDD+3N �phase C found in the diagram after
d�2.2l� and the Pfaffian state13 MPf=

N�2N−3�
2 . In Ref. 14, the

overlap of the corresponding states with the Pfaffian state
was investigated and was found to peak high slightly below
d=2l for eight electrons. Interestingly, this ground-state an-
gular momentum is unstable when d� �0.5l ,2.2l indicating
that, despite the high overlap, electron pairing is not ener-
getically favorable in the lowest Landau level even if the
thickness is optimized. Finally, we should mention the minor
phase at d=3l and B=10 T with M =64 that can be scarcely
seen in Fig. 3�b� and is of little importance.

With regard to experiments and an estimate for d, we have
compared the phase diagram for a two-electron quantum dot
�figure not shown� to the data presented in Ref. 7 where a
full three-dimensional �3D� treatment of the system was used
to explain experimental results. The magnetic field values at
the transition points between the spin-polarized ground states
appear to be in good agreement with the data for the thick-
ness parameter d�10 nm, which corresponds to about d
� l at B=10 T. Therefore, we expect at least the effects

�besides the obvious shifts in B� around d� l for six and
eight electrons to be relevant for a future experiment similar
to that conducted in Ref. 5, in which the electron number,
however, was limited to the maximum of 5. The energy as-
sociated with addition of the eighth electron is shown in Fig.
4, where the fusion of the ground-state transition points cor-
responding to the closing of the shaded phases in Fig. 3�b� is
clearly seen. The curves would be slightly modified if d was
not taken to depend on l.

At all electron numbers, the range of magnetic field for
each phase tends to be equal as the thickness is large. This
behavior also points toward microscopic explanation of these
phases by vortex formation as the creation of an additional
vortex is associated with a constant flux increase by one flux
quantum �0=hc /e.12

IV. VORTEX STRUCTURES

While the values of angular momenta in the phase dia-
grams are naturally explained by the geometric argument, a
more accurate description of the microscopic states can be
obtained by investigating the zeros of the wave functions.15

Since the many-body wave function is up to the exponential
factor merely an analytic polynomial in the complex electron
coordinates zi, the zeros are clearly visible in the phase struc-
ture of the wave function. For this purpose, we define the
phase of the conditional wave function
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FIG. 3. Same as Fig. 2 but for �a� seven and �b� eight electrons.

3 4 5
22

24

B(T)

µ
(m

eV
)

FIG. 4. The addition energy �N�=Egs�N�−Egs�N−1� for N=8
and d=0 �uppermost� ,0.1l ,0.2l , . . . ,1.9l. The black dots mark the
ground-state transitions of the N=8 quantum dot for integer d / l.
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��z� = arg� ��z,z2�, . . . ,zN� �
��z1�,z2�, . . . ,zN� �� , �6�

where zi� denote the electron coordinates fixed to chosen po-
sitions. Circumvention of each zero, henceforth called a vor-
tex, of p�z�=��z ,z2 , . . . ,zN� accumulates a factor 2�.

The phases � for the system of six electrons of the ground
states up to the angular momentum M�	= 1

3 � at d= l and 3l
are shown in Fig. 5. The vortex on top of each fixed coordi-
nate follows from the necessary presence of the factor ��zi
−zj� in each solution �. Of special interest are the free vor-
tices in the central area of the quantum dot, which typically
have an irrelevant reflection vortex outside the polygon pat-
tern. In the upper row of the figure, an angular momentum
increase by �M =5 always leads to an additional vortex near
the center, while on the lower row an increase of �M =6 is
required. Similar results hold for the larger angular momenta
and electron numbers.

The ground states with M =MMDD+kN can be approxi-
mated by the �un-normalized� trial wave function �CM
=��zi−zj���zi−zCM�k. This is obtained by eliminating the
center-of-mass motion by the transformation15 zi�zi−zCM
from the 	=1 integer Hall-effect state with k holes in the

origin. The approximation scheme is generalized to arbitrary
angular momenta M by taking the highest-weight many-body
basis vector 
�� of the ground state and performing the trans-
formation zi�zi−zCM, 
��� 
�CM�. We denote the basis
states by 
n0 ,n1 , . . . ,nm�, where ni is the occupation of the
state with angular momentum i. The thus obtained trial wave
functions and their overlap with the ground states are pre-
sented in Table I. At d= l, the overlaps are rather high until
M =M�	= 1

3 �=45, which is still better described by the cor-
responding Laughlin state trial wave function �overlap of
�0.97�. At d=3l, the overlaps are higher and even M
=M�	= 1

3 � is slightly better described by our trial wave func-
tion than as a Laughlin state ��0.67�. The two rightmost
diagrams in Fig. 5 with d= l �upper� and d=3l �lower� both
having M�	= 1

3 � also illustrate this breakdown of the incom-
pressible Laughlin state in thick systems as the vortices are
gradually less bound to the electron coordinates. This effect
due to the effective interaction is in contrast to the opposite
effect caused by a screened Coulomb interaction16 whereby,
in the strong-screening limit, the zeros are exactly localized
to the electron positions. Both cases are, of course, direct
consequence of pseudopotential parameters of the corre-
sponding interactions by Haldane17 and the fact that the
Laughlin state is exactly obtained for an interaction having
only the first pseudopotential coefficient nonzero.

The conclusion to be drawn from Table I is that for the
�M =N the hole is created or extended at the origin, while
for �M =N−1 states the essential mechanism of increasing
the angular momentum is to create a hole next to the origin.
Similarly, for the configurations with two electrons at the
center realized in the eight-electron dot, the trial wave func-
tions 
11000111111�CM and 
110000111111�CM may be ap-
plicable.

V. SUMMARY

We have studied the phase diagram of spin-polarized
quantum dots in high magnetic fields as a function of the
thickness, and found roughly that for electron number N
equal to 6 and 7, the ground-state angular momenta at dif-
ferent thicknesses occur at either intervals N or N−1. For
N�5, only the intervals N occur, while for N�8 other in-

TABLE I. Overlaps with the trial wave functions for �M =5 and
�M =6 vortex states for six-electron quantum dot.

M 
�� 	� 
�� 	� 
�CM�

d= l 20 
1011111� 0.83 0.97

25 
10011111� 0.67 0.80

30 
100011111� 0.61 0.79

35 
1000011111� 0.57 0.77

40 
10000011111� 0.53 0.74

45 
100000011111� 0.38 0.57

d=3l 21 
0111111� 0.92 0.996

27 
00111111� 0.84 0.97

33 
000111111� 0.75 0.92

39 
0000111111� 0.66 0.85

45 
00000111111� 0.53 0.72

FIG. 5. The complex phase of the conditional wave functions for the six-electron quantum dot, in which the electron coordinates are fixed
according to the most likely configuration indicated by +, and the uppermost electron is used as the probe electron. In the first row, the
thickness parameter d= l and the angular momenta are M =MMDD+5k with k=2, 3, 4, 5, and 6. In the second row, the thickness parameter
d=3l and the angular momenta are M =MMDD+6k with k=1, 2, 3, 4, and 5.
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tervals of type N−k can occur. Moreover, we have inter-
preted the angular momenta in terms of vortex formation
near the center of the quantum dot and constructed trial wave
functions that have a moderate overlap with the exact solu-
tions.

APPENDIX

The formula for the interaction matrix elements in the
effective oscillator units obtained by transforming into rela-
tive and center-of-mass coordinates reads

Mmn
l =

l�

a�

��m + l� ! n ! m ! �n + l�!−1/2�
�=0

m+l

�
�=0

m

�
�=0

n+l

��n + l − � − � + ����� + � − ���− 1��−�

��m + l

�
��n

�
��m

�
�� n + l

� + � − �
��m + n + l − � − �� ! � 1

�2
��� + � +

1

2� 1F1�1

2
,
1

2
− � − �,

d2

2 �
+

�� + ��!
��2�+�+1

��− � − � −
1

2� 1F1�� + � + 1,� + � +
3

2
,
d2

2 �� , �A1�

where � is the step function, 1F1 is the Kummer confluent hypergeometric function, l� is the effective oscillator length, and the
effective Bohr radius a�=4���2 / m�e2.
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